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Dissipation fluctuations of a passive scalar advected by a random velocity field

Victor Yakhot
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The dynamics of fluctuations of the dissipation rate of a passive scalar advected by a rapidly changing in
time Gaussian random velocity field with the variafieg(x) —v;(x+r)]%«r¢ is considered. It is shown that
when¢/d—0 the dissipation correlation functiqg(x) E(x+r))ecr? with y=—4¢&/(d+2) in agreement with
the recent works of Gawedzkii and KupiangPhys. Rev. Lett75, 3608(1995], and Chertkowet al. [Phys.

Rev. E52, 4924 (1995]. It is shown that in this limit the fourth-order moment of the scalar difference is
completely described in terms of the second-order moment and the scalar dissipation rate correlation function.
[S1063-651%96)11909-1

PACS numbdps): 47.27.Gs, 47.65:a

We consider the problem of a passive scdléx,t) ad- ables one to concentrate on investigation of the scaling prop-
vection by a rapidly changing in time random velocity field erties of the higher-order moments. Indeed, it easy to show

obeying the following equation of motigri]: [1] that in the limity— 0 and for allr>r
O T+v-VT=f+vV2T. (1) a 2 9 d —
t _Sz__clTl_ Dfd“g—sz)Z—& (5)
at r or ar

The rapidly changing in time incompressibl¥ {(v=0)

random velocity field is defined by the correlation function where the scalar dissipation rafe: »((3, T)2)=0(1). The

(0i(x v (X', 1)) = 8(t—t")D;i (Xx—X') first term on the right side of) defines the so called turbu-
. . lent diffusivity describing the scalar transfer by the random
=4(t—t")[D;;(0)—S;j(nN]. (2  velocity field. The contribution

The structure functiorg;;(r) is defined as 3?Sy(r)
vV— 7
Sj(N=Dré(d+¢-1)8;—énin]], 3 o
whered is the dimension of space<0¢<2 andn;=r;/r. is equal to zero in the inertial range when—0 and
The forcef is Gaussian, rapidly changing in time and F>Tq- This is the reason why alD[v¢(r)] terms are ne-
isotropic glected in what follows. However, when-r 4 one has to be
careful since, for example;S’(r)—(£)=0(1). We can see
(f(O,0)f(r,t")y=08(t—t")F(r) (4)  that the solution of problents) is S,or¢2 with
and the forcing functions act at the large scalesL only. &=2—-¢.
This means that whern/L— 0, setting all amplitudes equal
to unity, the functionsF(r)=1+0O[(r/L)?]. The infrared This (“normal™) scaling is a reflection of the fact that due
cutoff is denoted ak and the ultraviolet cutoffKolmogorov  to the scalar variance conservation law the scalar variance
scalg is ry=(v/D)Y¢—0. flux (£) is the only parameter characterizing the dynamics at

Evaluation of the energy spectrum of velocity fluctuationsthe scales y<r<L. Indeed, the Fourier transform of right
in turbulent flow remains one of the last important problemsside of(5), which is related to sources and sinks at the inter-
of classical physics. At the present time no argument whichmediate scales, is equal to zero for dkL. The effective-
is better founded than the heuristic Kolmogorov 1941 theoniffusivity term in (5) is typical of all problems of scalar or
(K41), produced more than half a century ago, exist. Al-vector advection by the rapidly changing in time random
though the predictions of K41 have been confirmed by exvelocity field. However, in the case of nonconserved quanti-
perimental data with remarkable accuracy, one cannot arguees the right side of5) can also involve nonanalytic contri-
with certainty that no correction to the 5/3-energy spectrunbutions, proportional t&,r ¢~ 2 which, in principle can intro-
exist. Measurements of the higher-order moments velocitgluce anomalous scaling, dominated by the solutions of the
difference revealed the so-called anomalous scaling, i.ecorresponding homogeneous equation. In this case the scal-
Sp={[u(x) —u(x+r)]2"ocrén with the exponents,<né,. ing exponent, which cannot be determined on dimensional
Understanding the origin of anomalous scaling of the high-grounds, is derived from analysis of zero modes, reflecting
order moments, still remains one of the most challenging the infrared properties of the system. An excellent illustra-
tasks of turbulence theory. tion of these ideas was recently worked out by Vergassola

The problem defined bg1)-(3) is very interesting since it [2] who, considering the problem of magnetic fiégldadvec-
removes the trouble of evaluation of the scalar variancdgion by a random velocity field, calculated the correlation
S,=([T(X)—T(x+r)]®xréz and, as a consequence, en-function(H;(x)H;(x+r))eré with the anomalous exponent
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¢, dominated by the zero modes. It was pointed out by Boruavill be shown that the most probable scenario is a crossover
and Yakhot[3] that in the same system the fluctuations offrom the anomalous scaling of Refd,5] to the normal scal-
helicity, which unlike a magnetic field is an inviscid invari- ing. According to the theory, presented here, the transition
ant, are characterized by the normal scaling, derived fronmappens ag/d~d/(5d—6), which introduces a numerical
dimensional considerations with the helicity flux as a gov-smallness justifying approximations involved in the deriva-
erning parameter. tion of this result.

The first crack in the tough problem of anomalous scaling Let us define the dissipation matrix
of the higher-order moments in statistical hydrodynamics
was produced recently in two important papers by Gawedz- aT(x,t) dT(X,t)

kii and Kupianer{4] and Chertkoet al.[5] who, investigat- &j(x)=v ax; ax; (10
ing the scaling of the fourth-order mome8goré4 in the
vicinity of the Gaussian limit§—0 [4] andd— [5], ob-  and the dissipation correlation tensor
tained
Fijin (X, X") =& (X) E(X"). (11
ag
§4=28~ 45 (6)  The trace off=¢&;; satisfies the equation

This relation manifests a theoretical breakthrough since for GEL-A*E=—20jv,&—2v°(6;9;T)*+vAE.  (12)

the first time it demonstrates an anomalous scaling of a
higher-order moment in a problem related to turbulence an%f
turbulent transfer.

The authors of Refd4] and[5] identified the reason for G(r,t)=(&(0,1)&(r,1)). (13)
the anomalous scaling @&, as originating from nontrivial
scaling exponent of the dissipation rate fluctuations. It is For the rapidly changing in time Gaussian velocity field
easy to show that when—0 (r>r) the equation of motion fo®(r,t) in the limit of zero viscos-
ity has the form

We will be interested in the two-point correlation function
the scalar dissipation

S, 2 9

e

S,
- (Drd‘1+‘-’5(9—r4 +b(E(X)E(x+T))ré,

atG=(viv]-)c?iajG-F4(vk&ivj>c9k<€5ij>+4<(9ivj&avb)

@ X(EjEap)+2£aGry 2= 2(Y(1)E(2))

where the value of the coefficiehtis easily derived from the

theory. This equation is derived in the following way. We —2(Y(2)&1) (14)
have from(1)
where
S 2 d( .., ) )
—~ — R g Y=1v%(0;0;T
at F’_lar(Dr ar |~ Ce AGaT)
where is the local value of the dissipation rate of the scalar variance
dissipation. The uv diverger®(r§?) contribution to(14)
Gu=—1A[ED)+E)T(2)-T(D)?). comes from
The principle contribution to the equation f6r., is i(X) dvi(x)
(9XJ' &XJ
Gk 2 4, .9C«
ot 9 Tor Dr ar +H{ED)E2)) which is a single-point mean quantity understood as a limit

of the two-point correlation function when the separation

which in the statistically steady state gives Ef). We can  |x—x'|—ry. TheO(1) coefficienta is easily derived from
see that definition (3). It is important that, as one can see fr@8),
that this term is proportional té.

The equations of motion for the correlation functi@Gnis
not closed due to the appearence of th€&) and
Yijxi ={Tijr) correlators on the right side ¢14). Indeed, we
are dealing here with an infinite chain of coupled equations
(E(X)E(X+1))ecr?, (9) ge_nerated by the dissipation term (#2). The equation for

is

Sycr2éty (8)

and the exponeny characterizes the dissipation rate fluctua-
tions

Thus evaluation of the scaling exponent 8f(r) is
equivalent to the determination of the dimensionality of the Y +0-A*Y=—2120,0 Y pii; = 20230 Y mjji
scalar dissipation rate which is the subject of this work. The 5.2 2
goal of the paper is twofold. First, we rederive the important 2v7010j0 mOm T 010, T+ 200011 1977
results of Refs[4,5] using a different, though equivalent, +20%(9;0;T)(3;9;AT), (15
procedure. Second, we attempt here to understand what can
happen if parameter of the problefd is not too small. It where
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Y miij = Vs(ﬁmﬁiT)(ﬁiﬂjT)- tion at the separation distance=ry. Let us discuss the
properties of the dissipation tengdi0) which can be defined
Equation(15) defines the dissipation of the scalar dissipationas
rate given by
Ej(x X', 0)=lim v, T(X',1) 9, T(X,t) (24
Y2: _4V3(V3T)2, (16) r—0 : !

where ¥"T)2=(a;,- - - 9,,T)2 The equation for the correla- When|x—x'|—rq—0. . _
tion functionG,=(Y,(1)Y,(2)) involves the term We can see froni24) that evaluation of the operatéy; is
equivalent to calculation of the four-point correlation func-
2G,r§i 2—=2(Y,(1)Y5(2))—2(Y5(2)Y5(1)). (17)  tion in the limit of the two of the distances going tg—O0.
To calculate the dissipation correlation function one has to
Then, we have to write the equations for the entire series ofet two of the distances equal tq and average over all
the dissipation rates angles. This was the approach pursued in Refsand[5].
N—1 N ene 2 In a more familiar language, we are interested in the role of
Yo=—2""1N(VIT) (18)  the scalar fluctuations at the scalesr 4 in the inertial range
dynamics of the fluctuations at the scates>r 4. To inves-
tigate this question and elucidate the details of the limiting
procedure, we can average E#)) over velocity fluctuations
v (k) with the wave numberk <k and derive the equation
ZGnr572_2<Yn(1)Yn+1(2)>_ 2(Yn(2)Yps1(1)), of motion for ® (k) =T_(k) for k<_<_ kq and @(k) =0 for
19 kf>(l1(),. The procedure involves writing the Fourier transform
0

with n=1. The most important feature of all equations for
Y. (1)Y,(2) correlation functions is that it involves the fol-
lowing combinations:

where G,=(Y,(1)Y,(2)). We will see below that in all
these equations the uv divergent terms cancel each other and T(K.o)=fa’(k.e)+ia%k (k f (a.Q
the remainingO(1) in the displacement contributions are (k@) =tg(k,w) +ig7ki(k,w) | vi(q.Q)
O(d™") which are small in the limit of largd. This conclu- . _
sion agrees with the result of Refgl] and[5] where the XT(k=0q,0=Q)dg dQ, (25
evaluation of the anomalous scaling exponent of the fourthgyhere the bare propagator is

order structure functioi$s,(r) was conducted. It was shown

there that the scaling is completely dominated by the kinetic 9°=(—iw+vk? L (26)
energy dissipation anomaly which disappears in the limit

£=0 andd=w. Thus, in this limit the effects, dominated by The correlation function of the velocity field can be written
the fluctuations ofY(x,t) with n>1, are small. It will be as
shown below that @r§{ 2—4(£Y)~(¢/d)?Gré~2 and for

the time being, we can neglect both tHé correlation func- (va(k)vﬁ(k’))ocl“(ﬂ)l“ £t2 i (Tr_g
tions andO(rg’z) contributions to the equation f@s(r) 2 2 2
k,k
&tGZ(vivj>ai(9jG+4<vkﬁivj>(9k<55ij) Xkd«f( 5a/3_ iz’g §(k+k’)5(t_t’).

+ 40000 p){EijEan) - (20) @7

When ¢<1 this expression i0(¢). Eliminating the
modes from the intervaky<<k is done readily in the limit

We will also need the equation fgfj which in the same
approximation can be written as

I Yijki =V oV ) Iad g Vi1 + KU 2050 g) 00V i daoo.. It is easy to see by analyzing the diagrammatic ex-
pansion of the propagator that the one-loop correction, which
+ 49V gV a) Viga - (21)  is exact in the case of the scalar advected by the rapidly

) _ o . changing in time random velocity field, i©®(d—1/d¢).
It is assumed that in the limit—0 the mean scalar dis- 5 the sole effect of the small-scale modes on the scalar

sipation rate is equal to the power of the external SOUrcq),cruations T(k) with k<kq is in the renormalization of
(&)—1. Thus we have to consider the limiting procedure diffusivity coefficient which becomes

E= |im0V lim ﬁxrﬁXT(X,)T(X). (22) vi~v+ O(f/d) (28)

r=U %' x

Since evaluating;; we are interested in the role of the
small scaled~rq4 for the fixed separation distange the
& =lim v lim a.9(T(x)T(x 23 scale separation justifying the eddy diffusivity concept is not
(@ g I TOOTO) 23 a problem here. Relatiof28) shows that in the limitd— o
the correction to the diffusivity coming from the modes
evaluated at =r4. Since(T(x)T(x'))=r? ¢ the mean dis- v (k) with ky<k tends to zero and the equation of motion for
sipation rate is equal to unity. Thus the dissipation rate ca® (k,t) is exactly the same &4) but with v, instead ofv.
be evaluated using the inertial range scalar correlation funcFhis result is important since it tells us that setting two of the

Taking the mean we have

v=0 y _x
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separation distancgs; andp, in the generah-point cor- L 0.0

relation function equal toy and averaging over all directions Ri= kakBJ dg g ¢ g( Oay™ qT) (k—=q);

of the vectorsp;; and py,, gives anO(1/d) factor. As a

consequence, we can assume the form of the tensor X (k=a)(k—a)(k—a);e(|k—al). (30
Yiji (1)

It will be shown below thate(k)ck™?~97% when
, , k>>1/L with y<0 and|y|=0[&/(d+2)]. Thus, the inte-
Vit = (& (XX D Eq(y+ry’ +1,1)) grand in(30) is
=120 T(X' 1) T(X,1)dyr 4 T(Y +1,1) . o
(0x 10Dy (Y O(q ¢ k=gl 779).
X Ayyr T(Y+T1,0))=0,0: 0,3, 0(r)+O@QMde" (1
e vy ))=09,d1(r) (Ade"() Since&>0, expressionf30) is an infrared divergent inte-
(29 gral in the limitq— 0 while the limitq— k does not pose any
problem. We see tha®;=0O(L?). It is clear, however that
) o , , this is an artifact of the Fourier space integration using the
in the limit |X—_X |—=rg, ly=y'|—=rqg andr>rqy. The Yel  expression for the velocity correlation functi¢2?). In fact,
unknown functione depends only on the large separationhe principle contribution to the integré80) comes from the
distancer and must be determined from the dynamics of thejhteryal 1L <ak<q with a<1, where the value of the
system. The f.unct|0nal_ form of the second te_rm on t_he rlghb(l) parameten is not needed for the conclusions derived
side of (29) will be derived below. The functior(r) is @  pejow. Since the integral is dominated by the infrared region,

mean of composite operators of the KiRA(X)B(x+r)) e sete(|k—q|)~ (k) and evaluaté30) with the result
where A(x) and B(x+r) are the functions ofT(x) and

T(x+r), respectively, which can be represented in terms of d— K6~ €92~ ¢
the corresponding multipoint correlation functions with part Rlocszfd—gki kikikio(k)+O mq)(k) .
of the separation distances equal o Thus expressiof29) a¢ (2= &) ) 31)

introduces the operator product expansion. We can \{28g
in terms of the corresponding eight-point correlation func-
tions with part of the separation distances equal to the dissid
pation scale 4. This, however, is unneccessary since, due t
the angular integrations the derivatives oygr=x—x’ and
po,=Yy—Yy' are small and can be neglected in the evaluatio
of the dissipation correlation function, wher- . Relation
(29) also tells us that in the limid— <o the correlation func-
tion of the dissipation matrix is given by a potential tensor up
to the O(1/d?) correction. This fact simplifies the calcula-
tions presented below and agrees with the conclusion of
REfS.'[4’5] ba_sed on the dl_rect analysis of the four-point ©O which is a potential tensor in since therl over the remain-
relation functions. Evaluation of the operator product expan-_ "> = ~ ¢ .
- . - Ing indicesi andk is equal to zero.
sion (29) in a general case, not based on the potentiality The most general form of potential tensgf, can be
Iproperty of yijii , is an extremely complex, unsolved, prob- derived from an expression given [i6] ikl
em.

To demonstrate that in the limd—o the equation for
%ijki (r) preserves the potentiality property, we have to sub-

Thus direct calculation shows that in the lingit-oo the
issipation tensor correlation function is a potential tensor up
% O(1/d) corrections. This result is extremely important for

what follows since it allows straightforward and simple
'bvaluation of the scalar dissipation rate correlation function
G(r). Itis interesting that evaluatingr of the right side of
(31 (RS gives

TrikRSxkik| y

Yijki =A(r)nin;nen + C(r)(8ij 0y + ;) Sk + 6k Gir)

stitute (29) into (21), takecurl over one of the indices and +B(r) (8 + SN + &N+ Signin;
prove that
+ 8NN+ Sjkhiny). (32
Vil The potentiality property simplifies the derivation enor-

eabi‘?bT 0. mously. First of all, the most general form of the fourth-
order tensor involves, in addition t(r), B(r), and C(r)
given above, two more which are in a potential case equal to
The same relation must hold also if we taker| over any  zero. To calculatey;j = d;d;dadpe(r) all we have to do is
other component, k, orl. The calculation is very easy in the evaluate the fourth-order derivative of a scalar function and,
Fourier space where comparing the resulting expression witB2) obtain the de-
sired relations betweeA(r), B(r), and C(r). The simple

but bulky calculation gives
Yijki = Kikjkik; (k)

S

—~~
=

~

C:

S|
SN
=

ande(k) is the Fourier transform ap(r). The Fourier trans-
form of the first term on the right side ¢21) with the ve-
locity correlation function(27) is B(r)=rC'(r),
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!

d C
=r3__
A(r)=r Frira

The trace of the dissipation tensor is equal to
G=(E&X)E(x+r1))=A+2B(d+2)+C(d*+2d)=r?C"
+rC’(2d+3)+d(d+2)C.

This expression can be rewitten as

r —_

rd=T or ar

GoAAo— 1 9 d 119 1 9
—AdeTiET gt

dlﬂso(r)H

Substituting these definitions int@1) we have

4§(d+¢)

» C+4¢(¢-1)C’

ﬁG+4 i C'+(d+2)C]+

o TAsolr (d+2)C]
=0.

Seeking the solution in the foriG«r?” so that

Go(d+ 24+ y)(d+ y)r¥*,

we derive a cubic equation for the exponent

y(d+y+48)(d+2+y)+44d+ 7(§—l)+§]=0,(33)

which can be solved numerically in the intervak@ <o
and 0<£<2. It can be seen readily that wheh—oo this
equation gives

_agd+H  ag
YT T dt48)(d+2)  d+2

(34

which is exactly the result of Reff4] and[5].

Now we have to evaluate the correlation function
g(r)=2(Y(1)&(2))—Gr§ 2 neglected in the derivation of
the above relations. In the vicinity of the Gaussian limit this
calculation is not difficult and is easily done in the Fourier
space. First of all, let us show that the tRGr§ ?) uv
divergent term is canceled by the contributions coming from
the Y& correlation function. The Fourier transform of the last
two terms on the right side dfL4) is

V3J dQ dQ’'da[Q-(a—Q)I’[Q"-(k—g—Q)T(QT(Q)T(q—QT(k—q—Q")

%—vgf dQ da[Q-(a~QIQ-(k=a+ QIT(Q) T(k—g+QI*~»’kg " *~r§ "2,

where the relationcr§ has been used. Since all other con-
tributions to (14) are O(1) the cancellation of the uv

O(r§?) divergences, coming from the last three terms onjs negligibly small wherr —0. Relation(35) has a simple
the right side of(14), is an exact consequence of Hd4).  physical meaning understood within a framework of deriva-
Thus, the estimate showing thaY&)=0(r§?), produced tion of the so called — & model widely used for engineering
above, is proof of the uv divergences cancellatioliy. To  computations of turbulent flows. The correlation function
evaluate the subleading terms we write

Eré2=0(r¢2) (36)

(Y(1)&(2))=0[v3*T(1)d*T(2)]
[ 4@ da QQQuaAITQPT(k-a-Q)F

=0(1/d?)

is a sum of the uv diverge®(v/r3~r§ ?) contribution and
the O(1)= v+/r? term which is obtained by substituting one
of the three v factors by the *“turbulent diffusivity”
vr~r¢. The factor 24 in the above relations is the result of
diagrammatic expansion of th€Y&) correlation function
leading to the substitution of one of thés by v;. The
factor 1H(d+2) comes from the angular integration. The
divergent contributions to E¢14) cancel each other and the
remaining term has a structure presented above.

The most remarkable feature of formuidb) is that the
O(r¢72) term (36) can produce an extremely important
physical effect wherg¢/d is not too small. To illustrate the
qualitative aspects of the phenomenon, we substitg5

Substituting this intd14) and(33) we see that in the limit into (33) which is, strictly speaking, valid only when
of small ¢/d the neglected term i®[(£/d)?]. In the same &/d —0 and investigate the resulting equation for the scaling
limit the contribution proportional to exponents. In this case the equation is

which is small in the limitd—c we are interested in.
It is possible to show that

2¢aGri 2—2(Y(1)&(2))—2(&(1)Y(2))

2482(d—1 _
—%(5(1)5(2))%2+O(6’2r§2). (35)
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d
Zo~———. 41
Y(d+ y+a8)(d+2+y) +4Ld+ Y (E- 1) +¢] ° 5d-6 “
24¢2(d—1) (d+2+y)(d+y) SV We can see that 1/5z.<1/2. At larged the crossover pa-
- d d(d+2) +0| & L =0. rameterz,— 1/5 which reasonably justifies the approxima-

tion z<1 used in the derivation. Formul@l) depends on
(37 the numerical values of the coefficients in the equations of
motion calculated in the range of a parameter variation
where the tenso;;, can be considered a potential tensor.
That is why, in principle, it is dangerous to use it in the
2ae?(d—1 interval £/d=0(1). Indeed, this result is inconsistent with
B2+ ay+4£(d+ &) — 4 ) -0, (39) the systematic expansion in powers&tl developed above,
d since theD(1/d) potentiality-violating correction t¢31) was
neglected in deriving4l). That is why the disappearence of
where a=(d+4&)(d+2)+4&(E—1)— 48¢%(d2—1)/  the zero mode given by4l) can be considered only as a

d?(d+2) andB=2d+6—1/d(d+2). We can see that if ~ Possible scenario of what can happen in the range
&/d=0(1). Relation (41), however, can be approximately

correct if the neglected terms {81) are numerically small.

Since we will be interested in the solutions to this equa
tion y<1, theO(y®) contributions can be neglected giving

2(d—
4§(d+§)>24wl (39 In this case the corrections, neglected®1) are small and
d cannot violate the balance leading to the disappearence of the

. . . : zero mode at/d=~1/5. Another important conclusion of this
this equation has two negative roots. In this case the corre- : .

; . ; ; . . work is that the fourth-order moment of the scalar difference
lation function is dominated by the solution” with

1> 7, and theO(r 1) term disappears in the limit—0. is completely described by the second-order mon®it)

L . and the dissipation rate correlation functi@{(r). This is
The anomalous scaling is dominated by zero modes. How-. . . L ; )
similar to the semiheuristi& — & model, widely used in en-

ever, if gineering for quantitative description of turbulent flows. It is
£2(d—1) interesting that this model, leading to the anomalous scaling
4§(d+§)<24T (40 of S, can be derived from the equation for a passive scalar

advected by a rapidly changing in time random velocity field

the homogeneous equation produces two rogts0 and N the limit &/d—0.

v,<0 and the scaling of the correlation functi@er° is My deepest thanks are due to Vadim Borue whose input
forced by theO(r ) contribution to(37). The amplitude of to the development of the ideas presented in this work was
the correlation function is easily determined fr¢8Y). This  most essential. Most stimulating discussions with G. Falkov-
result means that the zero mode disappears and the scalingioh, U. Frisch, R.H. Kraichnan, V. Lebedev, S. Orszag, A.
the dissipation rate correlation function is “normal” as in Polyakov, and M. Vergassola are gratefully acknowledged.
the Kolmogorov theory of turbulence. The critical value of This work was supported by ARPA/ONR under URI grant
the ratioz= &/d at which the crossover takes place is N00014-92-J-1796, AFOSR grant F49620-93-1-0296.
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