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The dynamics of fluctuations of the dissipation rate of a passive scalar advected by a rapidly changing in
time Gaussian random velocity field with the variance@v i(x)2v i(x1r )#2}r j is considered. It is shown that
whenj/d→0 the dissipation correlation function^E(x)E(x1r )&}r g with g524j/(d12) in agreement with
the recent works of Gawedzkii and Kupianen@Phys. Rev. Lett.75, 3608~1995!#, and Chertkovet al. @Phys.
Rev. E52, 4924 ~1995!#. It is shown that in this limit the fourth-order moment of the scalar difference is
completely described in terms of the second-order moment and the scalar dissipation rate correlation function.
@S1063-651X~96!11909-7#

PACS number~s!: 47.27.Gs, 47.65.1a

We consider the problem of a passive scalarT(x,t) ad-
vection by a rapidly changing in time random velocity field
obeying the following equation of motion@1#:

] tT1v•“T5 f1n¹2T. ~1!

The rapidly changing in time incompressible (“•v50)
random velocity field is defined by the correlation function

^v i~x,t !v j~x8,t8!&5d~ t2t8!Di j ~x2x8!

[d~ t2t8!@Di j ~0!2Si j ~r!#. ~2!

The structure functionSi j (r ) is defined as

Si j ~r !5Dr j@~d1j21!d i j2jninj #, ~3!

whered is the dimension of space, 0<j<2 andni5r i /r .
The force f is Gaussian, rapidly changing in time and

isotropic

^ f ~0,t ! f ~r,t8!&5d~ t2t8!F~r ! ~4!

and the forcing functions act at the large scalesr;L only.
This means that whenr /L→0, setting all amplitudes equal
to unity, the functionsF(r )511O@(r /L)2#. The infrared
cutoff is denoted asL and the ultraviolet cutoff~Kolmogorov
scale! is r d5(n/D)1/j→0.

Evaluation of the energy spectrum of velocity fluctuations
in turbulent flow remains one of the last important problems
of classical physics. At the present time no argument which
is better founded than the heuristic Kolmogorov 1941 theory
~K41!, produced more than half a century ago, exist. Al-
though the predictions of K41 have been confirmed by ex-
perimental data with remarkable accuracy, one cannot argue
with certainty that no correction to the 5/3-energy spectrum
exist. Measurements of the higher-order moments velocity
difference revealed the so-called anomalous scaling, i.e.,
sn5^@u(x)2u(x1r )#2n&}r jn with the exponentsjn,nj2.
Understanding the origin of anomalous scaling of the high-
order momentssn still remains one of the most challenging
tasks of turbulence theory.

The problem defined by~1!-~3! is very interesting since it
removes the trouble of evaluation of the scalar variance
S25^@T(x)2T(x1r )#2&}r j2 and, as a consequence, en-

ables one to concentrate on investigation of the scaling prop-
erties of the higher-order moments. Indeed, it easy to show
@1# that in the limitn→0 and for allr@r d

]S2
]t

2
2

r d21

]

]r SDrd211j
]S2
]r D52E, ~5!

where the scalar dissipation rateE5n^(]xiT)
2&5O(1). The

first term on the right side of~5! defines the so called turbu-
lent diffusivity describing the scalar transfer by the random
velocity field. The contribution

n
]2S2~r !

]r 2

is equal to zero in the inertial range whenn→0 and
r@r d . This is the reason why allO@nf(r )# terms are ne-
glected in what follows. However, whenr→r d one has to be
careful since, for example,nS9(r )→^E&5O(1). We can see
that the solution of problem~5! is S2}r

j2 with

j2522j.

This ~‘‘normal’’ ! scaling is a reflection of the fact that due
to the scalar variance conservation law the scalar variance
flux ^E& is the only parameter characterizing the dynamics at
the scalesr d!r!L. Indeed, the Fourier transform of right
side of~5!, which is related to sources and sinks at the inter-
mediate scales, is equal to zero for allr!L. The effective-
diffusivity term in ~5! is typical of all problems of scalar or
vector advection by the rapidly changing in time random
velocity field. However, in the case of nonconserved quanti-
ties the right side of~5! can also involve nonanalytic contri-
butions, proportional toS2r

j22 which, in principle can intro-
duce anomalous scaling, dominated by the solutions of the
corresponding homogeneous equation. In this case the scal-
ing exponent, which cannot be determined on dimensional
grounds, is derived from analysis of zero modes, reflecting
the infrared properties of the system. An excellent illustra-
tion of these ideas was recently worked out by Vergassola
@2# who, considering the problem of magnetic fieldH advec-
tion by a random velocity field, calculated the correlation
function^Hi(x)Hi(x1r )&}r jh with the anomalous exponent
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jh dominated by the zero modes. It was pointed out by Borue
and Yakhot@3# that in the same system the fluctuations of
helicity, which unlike a magnetic field is an inviscid invari-
ant, are characterized by the normal scaling, derived from
dimensional considerations with the helicity flux as a gov-
erning parameter.

The first crack in the tough problem of anomalous scaling
of the higher-order moments in statistical hydrodynamics
was produced recently in two important papers by Gawedz-
kii and Kupianen@4# and Chertkovet al. @5# who, investigat-
ing the scaling of the fourth-order momentS4}r

j4 in the
vicinity of the Gaussian limitsj→0 @4# andd→` @5#, ob-
tained

j452j22
4j

d12
. ~6!

This relation manifests a theoretical breakthrough since for
the first time it demonstrates an anomalous scaling of a
higher-order moment in a problem related to turbulence and
turbulent transfer.

The authors of Refs.@4# and @5# identified the reason for
the anomalous scaling ofS4 as originating from nontrivial
scaling exponent of the dissipation rate fluctuations. It is
easy to show that whenr→0 (r@r d)

]S4
]t

'
2

r d21

]

]r SDrd211j
]S4
]r D1b^E~x!E~x1r !&r j2,

~7!

where the value of the coefficientb is easily derived from the
theory. This equation is derived in the following way. We
have from~1!

]S4
]t

'
2

r d21

]

]r SDrd211j
]S4
]r D2GeK ,

where

GeK5212̂ @E~1!1E~2!#@T~2!2T~1!#2&.

The principle contribution to the equation forGeK is

]GeK

]t
'

2

r d21

]

]r SDrd211j
]GeK

]r D1^E~1!E~2!&

which in the statistically steady state gives Eq.~7!. We can
see that

S4}r
2j21g ~8!

and the exponentg characterizes the dissipation rate fluctua-
tions

^E~x!E~x1r !&}r g. ~9!

Thus evaluation of the scaling exponent ofS4(r ) is
equivalent to the determination of the dimensionality of the
scalar dissipation rate which is the subject of this work. The
goal of the paper is twofold. First, we rederive the important
results of Refs.@4,5# using a different, though equivalent,
procedure. Second, we attempt here to understand what can
happen if parameter of the problemj/d is not too small. It

will be shown that the most probable scenario is a crossover
from the anomalous scaling of Refs.@4,5# to the normal scal-
ing. According to the theory, presented here, the transition
happens atj/d'd/(5d26), which introduces a numerical
smallness justifying approximations involved in the deriva-
tion of this result.

Let us define the dissipation matrix

Ei j ~x,t !5n
]T~x,t !

]xi

]T~x,t !

]xj
~10!

and the dissipation correlation tensor

G i jkl ~x,x8!5Ei j ~x!Ekl~x8!. ~11!

The trace ofE[Ei i satisfies the equation

] tE1v•D* E522] jv iEi j22n2~] i] jT!21nDE. ~12!

We will be interested in the two-point correlation function
of the scalar dissipation

G~r ,t !5^E~0,t !E~r,t !&. ~13!

For the rapidly changing in time Gaussian velocity field
the equation of motion forG(r ,t) in the limit of zero viscos-
ity has the form

] tG5^v iv j&] i] jG14^vk] iv j&]k^EEi j &14^] iv j]avb&

3^Ei jEab&12jaGrd
j2222^Y~1!E~2!&

22^Y~2!E~1!& ~14!

where

Y5n2~] i] jT!2

is the local value of the dissipation rate of the scalar variance
dissipation. The uv divergentO(r d

j22) contribution to~14!
comes from

K ]v i~x!

]xj

]v i~x!

]xj
L

which is a single-point mean quantity understood as a limit
of the two-point correlation function when the separation
ux2x8u→r d . TheO(1) coefficienta is easily derived from
definition ~3!. It is important that, as one can see from~3!,
that this term is proportional toj.

The equations of motion for the correlation functionG is
not closed due to the appearence of the^YE& and
g i jkl5^G i jkl & correlators on the right side of~14!. Indeed, we
are dealing here with an infinite chain of coupled equations
generated by the dissipation term in~12!. The equation for
Y is

] tY1v•D*Y522n2] jvmYmii j22n2] ivmYmj ji

22n2] i] jvm]mT] i] jT12n2] i] j f ] i] jT

12n3~] i] jT!~] i] jDT!, ~15!

where
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Ymii j5n3~]m] iT!~] i] jT!.

Equation~15! defines the dissipation of the scalar dissipation
rate given by

Y2524n3~¹3T!2, ~16!

where (¹nT)2[(] i1•••] inT)
2. The equation for the correla-

tion functionG25^Y2(1)Y2(2)& involves the term

2G2r d
j2222^Y2~1!Y3~2!&22^Y2~2!Y3~1!&. ~17!

Then, we have to write the equations for the entire series of
the dissipation rates

Yn522n21nn~¹nT!2 ~18!

with n>1. The most important feature of all equations for
Yn(1)Yn(2) correlation functions is that it involves the fol-
lowing combinations:

2Gnr d
j2222^Yn~1!Yn11~2!&22^Yn~2!Yn11~1!&,

~19!

whereGn5^Yn(1)Yn(2)&. We will see below that in all
these equations the uv divergent terms cancel each other and
the remainingO(1) in the displacementr contributions are
O(d2n) which are small in the limit of larged. This conclu-
sion agrees with the result of Refs.@4# and @5# where the
evaluation of the anomalous scaling exponent of the fourth-
order structure functionS4(r ) was conducted. It was shown
there that the scaling is completely dominated by the kinetic
energy dissipation anomaly which disappears in the limit
j50 andd5`. Thus, in this limit the effects, dominated by
the fluctuations ofYn(x,t) with n.1, are small. It will be
shown below that 2Grd

j2224^EY&'(j/d)2Grj22 and for
the time being, we can neglect both theYE correlation func-
tions andO(r d

j22) contributions to the equation forG(r )

] tG5^v iv j&] i] jG14^vk] iv j&]k^EEi j &

14^] iv j]avb&^Ei jEab&. ~20!

We will also need the equation forg i jkl which in the same
approximation can be written as

] tg i jkl5^vavb&]a]bg i jkl14^va] jvb&]ag ibkl

14^] jvb]kva&g iba l . ~21!

It is assumed that in the limitn→0 the mean scalar dis-
sipation rate is equal to the power of the external source
^E&→1. Thus we have to consider the limiting procedure

E5 lim
n→0

n lim
x8→x

]x8]xT~x8!T~x!. ~22!

Taking the mean we have

^E&5 lim
n→0

n lim
x8→x

] r] r^T~x8!T~x!& ~23!

evaluated atr5r d . Since^T(x)T(x8)&}r 22j the mean dis-
sipation rate is equal to unity. Thus the dissipation rate can
be evaluated using the inertial range scalar correlation func-

tion at the separation distancer5r d . Let us discuss the
properties of the dissipation tensor~10! which can be defined
as

Ei j ~x,x8,t !5 lim
n→0

n]x
i8
T~x8,t !]xjT~x,t ! ~24!

when ux2x8u→r d→0.
We can see from~24! that evaluation of the operatorEi j is

equivalent to calculation of the four-point correlation func-
tion in the limit of the two of the distances going tor d→0.
To calculate the dissipation correlation function one has to
set two of the distances equal tor d and average over all
angles. This was the approach pursued in Refs.@4# and @5#.
In a more familiar language, we are interested in the role of
the scalar fluctuations at the scalesl<r d in the inertial range
dynamics of the fluctuations at the scalesr..r d . To inves-
tigate this question and elucidate the details of the limiting
procedure, we can average Eq.~1! over velocity fluctuations
v(k) with the wave numberskd,k and derive the equation
of motion for Q(k)5T(k) for k,,kd and Q(k)50 for
k.kd . The procedure involves writing the Fourier transform
of ~1!

T~k,v!5 f go~k,v!1 igoki~k,v!E v i~q,V!

3T~k2q,v2V!dq dV, ~25!

where the bare propagator is

go5~2 iv1nk2!21. ~26!

The correlation function of the velocity field can be written
as

^va~k!vb~k8!&}GS j1d

2 DGS j12

2 D sinS pj

2 D
3k2d2jS dab2

kakb

k2 D d~k1k8!d~ t2t8!.

~27!

When j!1 this expression isO(j). Eliminating the
modes from the intervalkd,k is done readily in the limit
d→`. It is easy to see by analyzing the diagrammatic ex-
pansion of the propagator that the one-loop correction, which
is exact in the case of the scalar advected by the rapidly
changing in time random velocity field, isO(d21/d j).
Thus the sole effect of the small-scale modes on the scalar
fluctuationsT(k) with k!kd is in the renormalization of
diffusivity coefficient which becomes

n1'n1O~j/d!. ~28!

Since evaluatingEi j we are interested in the role of the
small scalesl'r d for the fixed separation distancer , the
scale separation justifying the eddy diffusivity concept is not
a problem here. Relation~28! shows that in the limitd→`
the correction to the diffusivity coming from the modes
v(k) with kd,k tends to zero and the equation of motion for
Q(k,t) is exactly the same as~1! but with n1 instead ofn.
This result is important since it tells us that setting two of the
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separation distancesr i j andrmn in the generaln-point cor-
relation function equal tor d and averaging over all directions
of the vectorsri j and rmn gives anO(1/d) factor. As a
consequence, we can assume the form of the tensor
g i jkl (r )

g i jkl5^Ei j ~x,x8,t !Ekl~y1r,y81r ,t !&

5n2^]x
i8
T~x8,t !]xjT~x,t !]y81r k

T~y81r ,t !

3]y1r l
T~y1r ,t !&5] i] j]k] lw~r !1O„1/dw9~r !…

~29!

in the limit ux2x8u→r d , uy2y8u→r d and r@r d . The yet
unknown functionw depends only on the large separation
distancer and must be determined from the dynamics of the
system. The functional form of the second term on the right
side of ~29! will be derived below. The functionw(r ) is a
mean of composite operators of the kind^A(x)B(x1r )&
where A(x) and B(x1r ) are the functions ofT(x) and
T(x1r ), respectively, which can be represented in terms of
the corresponding multipoint correlation functions with part
of the separation distances equal tor d . Thus expression~29!
introduces the operator product expansion. We can write~29!
in terms of the corresponding eight-point correlation func-
tions with part of the separation distances equal to the dissi-
pation scaler d . This, however, is unneccessary since, due to
the angular integrations the derivatives overr15x2x8 and
r25y2y8 are small and can be neglected in the evaluation
of the dissipation correlation function, whend→`. Relation
~29! also tells us that in the limitd→` the correlation func-
tion of the dissipation matrix is given by a potential tensor up
to theO(1/d2) correction. This fact simplifies the calcula-
tions presented below and agrees with the conclusion of
Refs.@4,5# based on the direct analysis of the four-point cor-
relation functions. Evaluation of the operator product expan-
sion ~29! in a general case, not based on the potentiality
property ofg i jkl , is an extremely complex, unsolved, prob-
lem.

To demonstrate that in the limitd→` the equation for
g i jkl (r ) preserves the potentiality property, we have to sub-
stitute ~29! into ~21!, takecurl over one of the indices and
prove that

eabi]b
]g i jkl

]t
50.

The same relation must hold also if we takecurl over any
other componentj , k, or l . The calculation is very easy in the
Fourier space where

g i jkl5kikjkkklw~k!

andw(k) is the Fourier transform ofw(r ). The Fourier trans-
form of the first term on the right side of~21! with the ve-
locity correlation function~27! is

R15kakbE dq q2d2jS dab
2
qaqb

q2 D ~k2q! i

3~k2q! l~k2q!k~k2q! jw~ uk2qu!. ~30!

It will be shown below thatw(k)}k2g2d24 when
k..1/L with g,0 andugu5O@j/(d12)#. Thus, the inte-
grand in~30! is

O~q2j2duk2qu2g2d!.

Sincej.0, expression~30! is an infrared divergent inte-
gral in the limitq→0 while the limitq→k does not pose any
problem. We see thatR15O(Lj). It is clear, however that
this is an artifact of the Fourier space integration using the
expression for the velocity correlation function~27!. In fact,
the principle contribution to the integral~30! comes from the
interval 1/L!ak,q with a!1, where the value of the
O(1) parametera is not needed for the conclusions derived
below. Since the integral is dominated by the infrared region,
we setw(uk2qu)'w(k) and evaluate~30! with the result

R1}k
22j

d21

dajj
kikjkkklw~k!1OS k62ja22j

~22j!~d12!
w~k! D .

~31!

Thus direct calculation shows that in the limitd→` the
dissipation tensor correlation function is a potential tensor up
to O(1/d) corrections. This result is extremely important for
what follows since it allows straightforward and simple
evaluation of the scalar dissipation rate correlation function
G(r ). It is interesting that evaluatingTr jk of the right side of
~31! (RS) gives

Tr jkRS}kikl ,

which is a potential tensor in since thecurl over the remain-
ing indicesi andk is equal to zero.

The most general form of potential tensorg i jkl can be
derived from an expression given in@6#

g i jkl5A~r !ninjnknl1C~r !~d i jdkl1d j ld ik1d jkd i l !

1B~r !~d i j nknl1d iknlnj1d i l njnk1dklninj

1d j l nink1d jkninl !. ~32!

The potentiality property simplifies the derivation enor-
mously. First of all, the most general form of the fourth-
order tensor involves, in addition toA(r ), B(r ), andC(r )
given above, two more which are in a potential case equal to
zero. To calculateg i jkl5] i] j]a]bw(r ) all we have to do is
evaluate the fourth-order derivative of a scalar function and,
comparing the resulting expression with~32! obtain the de-
sired relations betweenA(r ), B(r ), andC(r ). The simple
but bulky calculation gives

C5
1

r

]

]r

w8~r !

r
,

B~r !5rC8~r !,
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A~r !5r 3
]

]r

C8

r
.

The trace of the dissipation tensor is equal to

G5^E~x!E~x1r !&5A12B~d12!1C~d212d!5r 2C9

1rC8~2d13!1d~d12!C.

This expression can be rewitten as

G5DDw5
1

r d21

]

]r
r d21

]

]r H 1

r d21

]

]r F r d21
]w~r !

]r G J .
Substituting these definitions into~21! we have

]G

]r
14j

]

]r
@rC81~d12!C#1

4j~d1j!

r
C14j~j21!C8

50.

Seeking the solution in the formC}r g so that

G}~d121g!~d1g!r x,

we derive a cubic equation for the exponentg

g~d1g14j!~d121g!14j@d1g~j21!1j#50,
~33!

which can be solved numerically in the interval 2,d,`
and 0,j,2. It can be seen readily that whend→` this
equation gives

g52
4j~d1j!

~d14j!~d12!
→2

4j

d12
~34!

which is exactly the result of Refs.@4# and @5#.
Now we have to evaluate the correlation function

g(r )52^Y(1)E(2)&2Grd
j22 neglected in the derivation of

the above relations. In the vicinity of the Gaussian limit this
calculation is not difficult and is easily done in the Fourier
space. First of all, let us show that the theO(Grd

j22) uv
divergent term is canceled by the contributions coming from
theYE correlation function. The Fourier transform of the last
two terms on the right side of~14! is

n3E dQ dQ8dq@Q–~q2Q!#2[Q8–~k2q2Q8…#T~Q!T~Q8!T~q2Q!T~k2q2Q8!

'2n3E dQ dq@Q–~q2Q!#2@Q–~k2q1Q!#uT~Q!u2uT~k2q1Qu2'n3kd
212j'r d

j22 ,

where the relationn}r d
j has been used. Since all other con-

tributions to ~14! are O(1) the cancellation of the uv
O(r d

j22) divergences, coming from the last three terms on
the right side of~14!, is an exact consequence of Eq.~14!.
Thus, the estimate showing that^YE&5O(r d

j22), produced
above, is proof of the uv divergences cancellation in~14!. To
evaluate the subleading terms we write

n3E dQ dq Q2QiQmqiqmuT~Q!u2uT~k2q2Q!u2

5O~1/d2!

which is small in the limitd→` we are interested in.
It is possible to show that

2jaGrd
j2222^Y~1!E~2!&22^E~1!Y~2!&

'2
24j2~d21!

d2~d12!
^E~1!E~2!&r j221O~ Ē2r j22!. ~35!

Substituting this into~14! and~33! we see that in the limit
of small j/d the neglected term isO@(j/d)2#. In the same
limit the contribution proportional to

Ē2r j225O~r j22! ~36!

is negligibly small whenr→0. Relation~35! has a simple
physical meaning understood within a framework of deriva-
tion of the so calledK2E model widely used for engineering
computations of turbulent flows. The correlation function

^Y~1!E~2!&5O@n3]4T~1!]2T~2!#

is a sum of the uv divergentO(n/r d
2'r d

j22) contribution and
theO(1)5 nT/r

2 term which is obtained by substituting one
of the three n factors by the ‘‘turbulent diffusivity’’
nT'r j. The factor 24 in the above relations is the result of
diagrammatic expansion of thêYE& correlation function
leading to the substitution of one of then ’s by nT . The
factor 1/d(d12) comes from the angular integration. The
divergent contributions to Eq.~14! cancel each other and the
remaining term has a structure presented above.

The most remarkable feature of formula~35! is that the
O(r j22) term ~36! can produce an extremely important
physical effect whenj/d is not too small. To illustrate the
qualitative aspects of the phenomenon, we substitute~35!
into ~33! which is, strictly speaking, valid only when
j/d→0 and investigate the resulting equation for the scaling
exponents. In this case the equation is
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g~d1g14j!~d121g!14j@d1g~j21!1j#

2
24j2~d21!

d

~d121g!~d1g!

d~d12!
1OF Ē2S rL D 2gG50.

~37!

Since we will be interested in the solutions to this equa-
tion g!1, theO(g3) contributions can be neglected giving

bg21ag14j~d1j!2
24j2~d21!

d
50, ~38!

where a5(d14j)(d12)14j(j21)2 48j2(d221)/
d2(d12) andb52d1621/d(d12). We can see that if

4j~d1j!.24
j2~d21!

d
, ~39!

this equation has two negative roots. In this case the corre-
lation function is dominated by the solutionr g1 with
g1.g2 and theO(r2g1) term disappears in the limitr→0.
The anomalous scaling is dominated by zero modes. How-
ever, if

4j~d1j!,24
j2~d21!

d
~40!

the homogeneous equation produces two rootsg1.0 and
g2,0 and the scaling of the correlation functionG}r 0 is
forced by theO(r2g) contribution to~37!. The amplitude of
the correlation function is easily determined from~37!. This
result means that the zero mode disappears and the scaling of
the dissipation rate correlation function is ‘‘normal’’ as in
the Kolmogorov theory of turbulence. The critical value of
the ratioz5 j/d at which the crossover takes place is

zc'
d

5d26
. ~41!

We can see that 1/5,zc,1/2. At larged the crossover pa-
rameterzc→1/5 which reasonably justifies the approxima-
tion z!1 used in the derivation. Formula~41! depends on
the numerical values of the coefficients in the equations of
motion calculated in the range of a parameter variation
where the tensorg i jkl can be considered a potential tensor.
That is why, in principle, it is dangerous to use it in the
interval j/d5O(1). Indeed, this result is inconsistent with
the systematic expansion in powers ofj/d developed above,
since theO(1/d) potentiality-violating correction to~31! was
neglected in deriving~41!. That is why the disappearence of
the zero mode given by~41! can be considered only as a
possible scenario of what can happen in the range
j/d5O(1). Relation ~41!, however, can be approximately
correct if the neglected terms in~31! are numerically small.
In this case the corrections, neglected in~31! are small and
cannot violate the balance leading to the disappearence of the
zero mode atj/d'1/5. Another important conclusion of this
work is that the fourth-order moment of the scalar difference
is completely described by the second-order momentS2(r )
and the dissipation rate correlation functionG(r ). This is
similar to the semiheuristicK2E model, widely used in en-
gineering for quantitative description of turbulent flows. It is
interesting that this model, leading to the anomalous scaling
of S4 can be derived from the equation for a passive scalar
advected by a rapidly changing in time random velocity field
in the limit j/d→0.
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